Hindayani Blog - Kumpulan Soal, Share Pengalaman Kerja

Menentukan Persamaan Dua Garis yang Sejajar

Diperbarui terakhir: 28 Oktober, 2014


Menentukan Persamaan Dua Garis yang Sejajar – Sebelumnya, kita telah belajar tentang persamaan garis lurus yang melalui satu titik. Di mana ada dua cara yang bisa dilakukan untuk mengerjakan soalnya dengan mudah. Kali ini, kami akan membahas tentang persamaan dua garis yang posisinya sejajar. Di mana dalam hal ini, berlaku aturan khusus saat dua garis lurus tersebut sejajar. Simak ulasannya di bawah ini.

Cara menentukan persamaan dua garis yang sejajar dengan mudah

Menentukan Persamaan Dua Garis yang Sejajar

Rangkuman materi

Secara logika, dua persamaan garis lurus yang sejajar akan memiliki kemiringan garis yang sama. Dengan kata lain, kemiringan atau gradien dari dua garis tersebut adalah sama besar. Dan dituliskan sebagai berikut;

Misal y1 = m1x + b1 merupakan persamaan garis lurus pertama dan y2 = m2x + b2 adalah persamaan garis lurus kedua. Maka ketika dua garis ini sejajar berlaku;

m1 = m2

Artinya, gradien pada persamaan garis lurus pertama sama nilainya dengan gradien pada persamaan garis lurus kedua.

Contoh soal 1

Untuk memahami dan menentukan persamaan dua garis yang sejajar dengan mudah, Anda bisa menyimak contoh soal di bawah ini;

Carilah persamaan garis yang sejajar dengan persamaan garis lurus y = 2x – 3 dan melalui titik (4,3)

Jawaban dan penyelesaian

Diketahui, persamaan garis lurus pertama adalah y = 2x – 3

Di mana y1 = m1x + b1

y = 2x – 3, yang artinya m1= 2. Karena garisnya sejajar, maka m2 = 2 juga.

Substitusikan nilai m2 = 2 di atas pada persamaan garis lurus y = mx + b. Substitusikan juga nilai x dan y yang dilalui oleh garis tersebut. m2 = 2

y = mx + b

3 = 2.4 + b

3 = 8 + b

b = 3 – 8

b = -5

dengan demikian, dapat disimpulkan bahwa persamaan garis lurus yang sejajar dengan garis y = 2x – 3 adalah y = 2x – 5

Contoh Soal 2

Tentukan persamaan garis yang lurus dengan garis 2x + 3y + 6 = 0 dan melalui titik (-2, 5)

Jawaban dan penyelesaian

Langkah pertama, ubah dulu persamaan 2x + 3y + 6 = 0 dalam persamaan garis lurus secara umum, menjadi;

2x + 3y + 6 = 0

3y = -2x – 6

Y = -2/3 x – 2

Dengan begini, nilai m1 = -2/3

Kemudian, m1 = m2 = -2/3 (karena sejajar), substitusikan pada persamaan berikut titik yang dilalui oleh garis tersebut;

y = mx + b

5 = -2/3 . -2 + b

5 = 4/3 + b

b = 5 – 4/3

b = 11/3

Substitusi ke persamaan umum lagi;

y = mx + b

y = -2/3x + 11/3 (dikalikan 3 semua)

3y = -2x + 11

2x + 3y – 11 = 0

Itulah cara menentukan persamaan dua garis yang sejajar dengan mudah. Selamat belajar.

Hindayani.com

Leave a Reply